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Signal Transmission through LTI Systems 

  We have seen previously that if x(t) and y(t) are input & output of a LTI 
system with impulse response h(t), then 

  We can therefore perform LTI system analysis with Fourier transform in a 
way similar to that of Laplace transform. 

  However, FT is more restrictive than Laplace transform because the 
system must be stable, and x(t) must itself by Fourier transformable.  

  Laplace transform can be used to analyse stable AND unstable system, 
and apply to signals that grow exponentially.  

  If a system is stable, it can shown that the frequency response of the 
system H(jω) is just the Fourier transform of h(t) (i.e. H(ω)): 

L7.4 p717 
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Example 

  Find the zero-state response of a stable LTI system with transfer function 

 and the input is x(t) = e-t u(t). 
  The FT of input x(t) is: 

  Since the system is stable, therefore H(jω) = H(ω).  Hence 

  Therefore 

  Using partial fractions, we get: 

L7.4 p717 
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Time-domain vs Frequency-domain 

L7.4 p718 

Impulse response 

x(t) as sum of impulse components 

y(t) as sum of responses to impulse 
components 

System response to ejωt is H(w)ejωt 

x(t) as sum of everlasting 
exponential components 

y(t) as sum of responses to 
exponential components 
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Signal Distortion during transmission 

  QUESTION: What is the characteristic of a system that allows signal to 
pass without distortion? 

  Transmission is distortionless if output is identical to input within a 
multiplicative constant, and relative delay is allowed.  That is: 

  But Y(ω)/X(ω) = H(ω), therefore the frequency characteristic of a 
distortionless system is: 

L7.4 p720 

For distortionless transmission, amplitude response           must be a constant 
AND phase response             must be linear function of ω with slope –td .  ( )H ω∠

( )H ω
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Group Delay (again) 

                          means that every spectral component is delayed by td 
seconds. 

  Therefore a distortionless transmission needs a flat amplitude response 
and a linear phase response: 

  Measure phase linearity with: 

  If tg(ω) is  constant, signal is delayed by tg (assuming constant H(ω)). 
  tg(ω) is known as Group delay or Envelope delay. 
  Human ears are sensitive to amplitude distortion, but not phase distortion. 
  Human eyes are sensitive to phase distortion, but not (so much) amplitude 

distortion 
L7.4 p721 
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Bandpass Systems & Group Delay 

  Consider a bandpass system with amplitude and phase 
characteristics as shown: 

  If one applies an input z(t) = x(t) cos ωct, then the output y(t) is: 

  That is, the output is the delayed version of input z(t) and the 
output carrier acquires an extra phase φ0. 

  The envelope of the signal is therefore distortionless. 
  For the proof, see Lathi page 723. 

L7.4 p722 

Lecture 12 Slide 8 PYKC 20-Feb-11 E2.5 Signals & Linear Systems 

Example 

  A signal z(t) shown below is given by                              where ωc=2000π.  
The pulse x(t) is a lowpass pulse of duration 0.1sec and has a bandwidth of 
about 10Hz.  This signal is passed through a filter whose frequency response 
is shown below.  Find and sketch the filter output y(t). 

  Z(t) is a narrow band signal with bandwidth of 20Hz centered around 1kHz. 
  The gain at 1kHz is 2.  The group delay is: 

  The vertical intercept of phase response is  

L7.4 p724 
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Parseval’s Theorem 

  The energy of a signal x(t) can be derived in time or frequency domain: 

  Proof: 

L7.6 p730 

Change order of 
integration 
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Energy Spectral Density of a signal 

  Total energy is area under the curve of               vs ω (divided by 2π). 

  The energy over a small frequency band Δω (Δω→0) is: 

L7.6 p730 

2( )X ω

Energy spectral density (per 
unit bandwidth in Hz) 
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Energy Spectral Density of a REAL signal 

  If x(t) is a real signal, then X(ω) and X(-ω) are conjugate (L11, slide2): 

  This implies that X(ω) is an even function.  Therefore 

  Consequently, the energy contributed by a real signal by spectral 
components between ω1 and ω2 is: 

L7.6 p730 
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Example 

  Find the energy E of signal x(t) = e-at u(t).  Determine the frequency W 
(rad/s) so that the energy contributed by the spectral component from 0 to 
W is 95% of the total signal energy E. 

  Take FT of x(t): 

  By Parseval’s theorem: 

  Energy in band 0 to W is 95% of this, therefore: 

  Note: For this signal, 95% of energy is in small frequency band from 0 to 
12.7a rad/s or 2.02a Hz!!! L7.6 p731 
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Windowing and its effect 

  Extracting a segment of a signal in time is the same as multiplying the 
signal with a rectangular window: 

L7.8 p746 

X * 

Spectral spreading 

Energy spread out 
from ω0 to width of 
2π/T – reduced 
spectral resolution. 

Leakage 

Energy leaks out 
from the mainlobe 
to the sidelobes. 
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Mainlobe & Sidelobes in dB 

  Detail effects of windowing (rectangular window): 

L7.8 p746 
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Remedies for side effects of truncation 

1.  Make mainlobe width as narrow as possible -> implies as wide a window as 
possible. 

2.  Avoid big discontinuity in the windowing function to reduce leakage (i.e. 
high frequency sidelobes). 

3.  1) and 2) above are incompatible – therefore needs a compromise. 
  Commonly used windows outside rectangular window are: 

•  Hamming windows 
•  Hanning windows 
•  Barlett windows 
•  Blackman windows 
•  Kaiser windows 

L7.8 p746 
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Comparison of different windowing functions 


